Shuo Wang
A resolver-to-digital conversion method based on third-order rational fraction polynomial approximation for PMSM control
Wang, Shuo; Kang, Jinsong; Degano, Michele; Buticchi, Giampaolo
Authors
Jinsong Kang
Professor MICHELE DEGANO Michele.Degano@nottingham.ac.uk
Professor of Advanced Electrical Machines
Giampaolo Buticchi
Abstract
—In this paper, a cost-effective and highly accurate resolver-to-digital conversion (RDC) method is presented. The core of the idea is to apply a third-order rational fraction polynomial approximation (TRFPA) for the conversion of sinusoidal signals into the pseudo linear signals, which are extended to the range 0-360° in four quadrants. Then, the polynomial least squares method (PLSM) is used to achieve compensation to acquire the final angles. The presented method shows better performance in terms of accuracy and rapidity compared with the commercial available techniques in simulation results. This paper describes the implementation details of the proposed method and the way to incorporate it in digital signal processor (DSP) based permanent magnet synchronous motor (PMSM) drive system. Experimental tests under different conditions are carried out to verify the effectiveness for the proposed method. The obtained maximum error is about 0.0014° over 0-360° , which can usually be ignored in most industrial applications. Index Terms—Arc tangent function, Analog processing circuits, Pseudo linear signals, Resolver-to-digital conversion (RDC), Third-order rational fraction polynomial approximation (TRFPA).
Citation
Wang, S., Kang, J., Degano, M., & Buticchi, G. (2018). A resolver-to-digital conversion method based on third-order rational fraction polynomial approximation for PMSM control. IEEE Transactions on Industrial Electronics, 66(8), 6383-6392. https://doi.org/10.1109/TIE.2018.2884209
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 13, 2018 |
Online Publication Date | Dec 7, 2018 |
Publication Date | Dec 7, 2018 |
Deposit Date | Nov 30, 2018 |
Publicly Available Date | Dec 3, 2018 |
Journal | IEEE Transactions on Industrial Electronics |
Print ISSN | 0278-0046 |
Electronic ISSN | 1557-9948 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 66 |
Issue | 8 |
Pages | 6383-6392 |
DOI | https://doi.org/10.1109/TIE.2018.2884209 |
Keywords | Control and Systems Engineering; Electrical and Electronic Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/1351451 |
Publisher URL | https://ieeexplore.ieee.org/document/8566179 |
Additional Information | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Contract Date | Nov 30, 2018 |
Files
A Resolver-to-Digital Conversion Method Based On Third-order Rational Fraction Polynomial Approximation For PMSM Control
(2.2 Mb)
PDF
You might also like
Thermal management of a permanent magnet motor for an directly coupled pump
(2016)
Presentation / Conference Contribution
Design and optimization of a high power density machine for flooded industrial pump
(2016)
Presentation / Conference Contribution
Trade-off analysis and design of a high power density PM machine for flooded industrial pump
(2016)
Presentation / Conference Contribution
History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels
(2016)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search